Increasing the reliability of functional brain imaging methods

Frank G. Hillary

Penn State University, University Park, PA

REVIEW

"brain parcellations, ranged from 10 to 67,632 nodes... and at least 50 distinct parcellations in 106 studies reviewed."

NETWORK NEURO SCIENCE

Michael N. Hallquist^{1,2} and Frank G. Hillary^{1,2,3}

¹Department of Psychology, Pennsylvania State University, University Park, PA, USA ²Social Life and Engineering Sciences Imaging Center, University Park, PA, USA ³Department of Neurology, Hershey Medical Center, Hershey, PA, USA

an open access 🔓 journal

Keywords: Graph theory, Brain disorders, Network neuroscience, Proportional thresholding

Scanning the horizon: towards transparent and reproducible neuroimaging research

Russell A. Poldrack^{*} Chris I. Baker², Joke Durnez^{1,3}, Krzysztof J. Gorgolewski¹, Paul M. Matthews⁴, Marcus R. Munafö^{5,6}, Thomas E. Nichols⁷, Jean-Baptiste Poline⁸, Edward Vul⁹ and Tal Yarkoni¹⁰

Investigator degrees of freedom

Processing step	Reason	Options [suboptions]	Number of plausible options
Motion correction	Correct for head motion during scanning	 'Interpolation' [linear or sinc] 'Reference volume' [single or mean] 	4
Slice timing correction	Correct for differences in acquisition timing of different slices	'No', 'before motion correction' or 'after motion correction'	3
Field map correction	Correct for distortion owing to magnetic susceptibility	'Yes' or 'no'	2
Spatial smoothing	Increase SNR for larger activations and ensure assumptions of GRF theory	'FWHM' [4mm, 6mm or 8mm]	3
Spatial normalization	Warps an individual brain to match a group template	'Method' [linear or nonlinear]	2
High-pass filter	Remove low-frequency nuisance signals from data	'Frequency cut-off' [100s or 120s]	2
Head motion regressors	Remove remaining signals owing to head motion via statistical model	'Yes' or 'no' [if yes: 6/12/24 parameters or single time point 'scrubbing' regressors]	5
Haemodynamic response	Account for delayed nature of haemodynamic response to neuronal activity	 'Basis function' ['single-gamma' or 'double-gamma'] 'Derivatives' ['none', 'shift' or 'dispersion'] 	6
Temporal autocorrelation model	Model for the temporal autocorrelation inherent in fMRI signals	'Yes' or 'no'	² 60
Multiple-comparison correction	Correct for large number of comparisons across the brain	'Voxel-based GRF', 'cluster-based GRF', 'FDR' or 'non-parametric'	4
Total possible workflows			69,120

FDR, false discovery rate; FWHM, full width at half maximum; GRF, Gaussian random field; SNR, signal-to-noise ratio.

How do we increase reliability in findings in neuroimaging work?

Unified approaches/methods

Data sharing: ENIGMA

nature methods

fMRIPrep: a robust preprocessing pipeline for functional MRI

Oscar Esteban^{1*}, Christopher J. Markiewicz¹, Ross W. Blair¹, Craig A. Moodie¹, A. Ilkay Isik², Asier Erramuzpe³, James D. Kent⁴, Mathias Goncalves⁵, Elizabeth DuPre⁶, Madeleine Snyder⁷, Hiroyuki Oya⁸, Satrajit S. Ghosh^{5,9}, Jessey Wright¹, Joke Durnez⁶, Russell A. Poldrack^{1,10} and Krzysztof J. Gorgolewski^{1,10*}

Preprocessing task	fMRIPrep includes	Alternatives (not included within <i>fMRIPrep</i>)	
Anatomical T1w brain-extraction	antsBrainExtraction.sh (ANTs)	bet (FSL), 3dSkullstrip (AFNI), MRTOOL (SPM Plug-in)	
Anatomical surface reconstruction	recon-all (FreeSurfer)	CIVET, BrainSuite, Computational Anatomy (SPM Plug-in)	
Head-motion estimation (and correction)	mcflirt (FSL)	3dvolreg (AFNI), spm_realign (SPM), cross_realign_4dfp (4dfp), antsBrainRegistration (ANTs)	
Susceptibility-derived distortion estimation (and unwarping)	3dqwarp (AFNI)	fugue and topup (FSL), FieldMap and HySCO (SPM Plug-ins)	
Slice-timing correction	3dTshift (AFNI)	<pre>slicetimer (FSL), spm_slice_timing (SPM), interp_4dfp (4dfp)</pre>	
Intra-subject registration	bbregister (FreeSurfer), flirt (FSL)	3dvolreg (AFNI), antsRegistration (ANTs), Coregister (SPM GUI)	
Spatial normalization (inter-subject co-registration)	antsRegistration (ANTs)	@auto_tlrc (AFNI), fnirt (FSL), Normalize (SPM GUI)	
Surface sampling	mri_vol2surf (FreeSurfer)	MNE, Nilearn	
Subspace selection methods	melodic (FSL), ICA-AROMA	Nilearn, LMGS (SPM Plug-in)	
Confounds	in-house implementation	TAPAS PhysIO (SPM Plug-in)	
Steady-state detection	in-house implementation	Ad hoc implementations	

COMMENTARY

FOCUS ON BIG DATA

Big data from small data: data-sharing in the 'long tail' of neuroscience

Adam R Ferguson¹, Jessica L Nielson¹, Melissa H Cragin², Anita E Bandrowski³ & Maryann E Martone^{3,4}

NATURE NEUROSCIENCE VOLUME 17 | NUMBER 11 | NOVEMBER 2014

 ENIGMA Adult Moderate/Severe TBI : led Drs. Alexander Olsen (alexander.olsen@ntnu.no) and Frank Hillary (fhillary@psu.edu).

 ENIGMA Acute Mild TBI : led by Drs. Pratik Mukherjee (Pratik.Mukherjee@ucst.edu) and Andrew Mayer (amayer@mrn.org).

 ENIGMA Intimate Partner Violence : led by Dr. Carrie Esopenko (ce216@shp.rutgers.edu).

Efforts at Penn State: Toward a Universal MRI data processing pipeline:

NIH R61 work: HALFpipe

A Decentralized ComBat Algorithm and Applications to Functional Network Connectivity

Biozid Bostami^{1,2,3*}, Frank G. Hillary⁴, Harm Jan van der Horn⁵, Joukje van der Naalt⁶, Vince D. Calhoun^{1,2,3} and Victor M. Vergara^{1,2,3*}

¹ Department of Computer Science, Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, United States, ² Department of Computer Science, Georgia Institute of Technology, Atlanta, GA, United States, ³ Department of Computer Science, Emory University, Atlanta, GA, United States, ⁴ Department of Psychology, Penn State University, State College, PA, United States, ⁵ Department of Developmental Neurology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands, ⁶ Department of Medical Sciences, University of Groningen, University Medical Center Groningen, Groningen, Netherlands

COINSTAC

FIGURE 1 | Gives the overall picture of the decentralized ComBat algorithm and intra-communication between nodes.

Bostami et al., 2021

Summary

ENIGMA provides opportunities to foster collaboration and handle problems with scientific reliability

Enhancing reliability of science:

Addressing Small Samples Heterogeneity (go big to get small) Allows for combining inexact datasets Data harmonization to address site effects

Summary

Our goals within the ENIGMA structure pose new challenges that we are currently working on including:

Curation of datasets (>10,000 cases) to promote novel discovery in the behavioral consequences of TBI

Developing Universal Methods for the TBI Community

Virtual sharing to reduce privacy/institutional concerns

Elisabeth A. Wilde, PhD David Tate, PhD Eamonn Kennedy

Samantha Vervoordt Andrew Cwiek Hollie Mullin Elizabeth Rebuck

Thank you.

Helen Genova, PhD Ekaterina Dobryakova, PhD Nancy Chiaravalloti, PhD John DeLuca, PhD

Vince D. Calhoun, PhD Victor Vergara,PhD Biozid Bostami UNIVERSITY OF AMSTERDAM

Ilya Veer, PhD

Lea Waller

Icahn School of Medicine at Mount Sinai

Kristen Dams-O'Connor, PhD

Alexander Olsen, PhD

PENNSTATE. Sarah M. Rajtmajer, PhD **Department of IST** Michele Diaz. PhD **Director: Social Life and Engineering Imaging Center** Jose Soto, PhD **Department of Psychology** Peter Molenaar. PhD Human Dev. Fam Studies **Reka Albert, PhD Department of Physics** Alexander Olsen, PhD Ben Hampstead, PhD MICHIGAN MEDICINE Jordan Grafman, PhD Elisabeth A. Wilde, PhD David Tate, PhD **Emily Dennis, PhD** Eamonn Kenndey

Vince D. Calhoun, PhD Executive Science Officer and Director, Image Analysis and MR Research

Helen Genova, PhD Ekaterina Dobryakova, PhD Nancy Chiaravalloti, PhD John DeLuca, PhD

https://statisticsbyjim.com/probability/weibull-distribution